GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S3

Paper F MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S3 Paper F – Marking Guide

1.	(<i>a</i>)	e.g. get information on views of each age group	B 1	
	<i>(b)</i>	26, 31, 65, 44, 01, 48, 43, 12	M1 A2	
				(5)
	(c)	e.g. whether or not they have children	B1	(5)
2.	(<i>a</i>)	$r = \frac{2564.33}{\sqrt{3747.73} \times 2791.33} = 0.7928$	M1 A1	
		\ 5141.13X2191.33		
	<i>(b)</i>	H ₀ : $\rho = 0$ H ₁ : $\rho > 0$ <i>n</i> = 15, 5% level ∴ C.R. is <i>r</i> > 0.4409	B1 M1 A1	
		0.7928 > 0.4409 : significant		
		there is evidence that those good at maths are better at visio-spatial	A1	(6)
3.	(<i>a</i>)	C.I. $x \pm 1.6449 \frac{\sigma}{\sqrt{n}} = 31.4 \pm 1.6449 \frac{6.8}{\sqrt{60}}$	M1 A1	
		giving (29.96, 32.84) $\sqrt{60}$	A2	
	(b)	width = $2 \times 1.6449 \times \frac{6.8}{\sqrt{n}}$:: $2 \times 1.6449 \times \frac{6.8}{\sqrt{n}} < 1.5$	M1 A1	
	(-)	$\therefore \sqrt{n} > 14.91376$	A1	
		giving $n > 222.42$ so need 223 observations	M1 A1	(9)
4.	(<i>a</i>)	$P(0) = \left(\frac{4}{5}\right)^6 = 0.2621$		
		P(1) = $6(\frac{1}{5})(\frac{4}{5})^5 = 0.3932$ [or from tables]		
		$P(2) = \frac{6\times5}{2} \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^4 = 0.2458$		
		\times 120 to give exp. freqs. 31.46, 47.19, 29.49	M1 A2	
	(b)	$H_0: B(6, \frac{1}{5})$ is a suitable model		
		$H_1: B(6, \frac{1}{5})$ is not a suitable model	B1	
		combining groups ≥ 3	M1	
		$O E (O-E) \frac{(O-E)^2}{E}$		
		26 31.46 ⁻ 5.46 0.9476		
		56 47.19 8.81 1.6448 28 29.49 -1.49 0.0753		
		10 11.86 -1.86 0.2917		
		$\therefore \Sigma \frac{(O-E)^2}{E} = 2.959$	M1 A2	
		$v = 4 - 1 = 3, \chi^2_{\text{crit}}(5\%) = 7.815$	M1 A1	
		2.9594 < 7.815 : do not reject H ₀	A 1	
		B(6, $\frac{1}{5}$) is a suitable model	A1	
	(c)	B(6, $\frac{1}{5}$) is the dist. expected with guessing		
		\therefore suggests the group are not telepathic	B1	(12)

5.	(a)	expected freq. $18-34/Pro = \frac{100\times64}{200} = 32$		
		$35-54/\text{Pro} = \frac{100\times66}{200} = 33$	M1 A2	
		giving expected freqs 32 32		
		33 33		
		35 35	A1	
		H_0 : no association between age and attitude to Europe H_1 : association between age and attitude to Europe	B1	
			DI	
		$O E (O-E) \frac{(O-E)^2}{E}$		
		43 32 11 3.7813		
		21 32 -11 3.7813		
		30 33 -3 0.2727		
		36 33 3 0.2727 27 35 -8 1.8286		
		27 35 ⁻ 8 1.8286 43 35 8 1.8286		
		_		
		$\therefore \Sigma \frac{(O-E)^2}{E} = 11.765$	M1 A2	
		$v = 2, \chi^2_{\rm crit}(5\%) = 5.991$	M1 A1	
		11.765 > 5.991 ∴ significant		
		there is an association between age and attitude to Europe	A1	
	(\mathbf{h})	$y = 2 + \frac{2}{5} + \frac{50}{5} = 5,001$		
	(b)	$v = 2, \chi^2_{\text{crit}}(5\%) = 5.991$ 4.872 < 5.991 : not significant		
		there is no association amongst those who voted, get different result	M1 A1	(13)
6.	<i>(a)</i>	let E = how much longer for first two legs than next two		
		$\therefore E \sim N(63.1 + 65.7 - 65.4 - 62.5, 1.2^2 + 1.5^2 + 1.8^2 + 0.9^2)$		
		$= \sim N(0.9, 7.74)$	M1 A2	
		$P(E < 0) = P(Z < \frac{0 - 0.9}{\sqrt{7.74}})$	M1	
		= P(Z < 0.32) = 1 - 0.6255 = 0.3745	M1 A1	
	(b)	let F = total time for first team		
		$\therefore F \sim N(63.1 + 65.7 + 65.4 + 62.5, 7.74) = \sim N(256.7, 7.74)$	M1	
		let $G =$ how much longer second team take in total		
		$\therefore G \sim N(259.0 - 256.7, 3.4^2 + 7.74) = \sim N(2.3, 19.3)$	M1 A1	
		P(first team wins one race) = P(G > 0) = P(Z > $\frac{0-2.3}{\sqrt{19.3}}$)	M1	
		= P(Z > 0.52) = 0.6985	M1 A1	
		P(first team wins all four) = $(0.6985)^4 = 0.238$	M1 A1	(14)
7.	(a)	$\hat{\mu} = t = \frac{7335}{500} = 14.7$	M1 A1	
· •	(u)	500		
		$\hat{\sigma}^2 = s^2 = \frac{500}{499} \left(\frac{172040}{500} - 14.67^2 \right) = 129.1$	M2 A1	
	(b)	$\mathbf{H}_0: \boldsymbol{\mu}_L = \boldsymbol{\mu}_M \qquad \mathbf{H}_1: \boldsymbol{\mu}_L > \boldsymbol{\mu}_M$	B1	
		5% level \therefore C.R. is $z > 1.6449$	M1 A1	
		test statistic = $\frac{15.9 - 14.7}{\sqrt{\frac{108.5}{100.5} + \frac{129.1}{50.0}}} = 1.34$	M2 A2	
		1.34 < 1.6449 : do not reject H ₀	M1	
		no evidence of difference in mean length of calls	A1	
	(c)	distributions not necessarily normal but by CLT sample mean distributed		
	-	approximately normally whatever dist. for large sample \therefore can do test	B2	(16)

Total (75)

PMT

Performance Record – S3 Paper F

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	sampling	pmcc, hyp. test	confidence interval	goodness of fit, binomial	conting. table	linear comb. of Normal r.v.	unbiased estimates, diff. of means hyp. test	
Marks	5	6	9	12	13	14	16	75
Student								